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The basic physics properties and simplified model descriptions of the paradigmatic “percolation” transport in
low-frequency electrostatic �anisotropic magnetic� turbulence are theoretically analyzed. The key problem
being addressed is the scaling of the turbulent diffusion coefficient with the fluctuation strength in the limit of
slow fluctuation frequencies �large Kubo numbers�. In this limit, the transport is found to exhibit pseudocha-
otic, rather than simply chaotic, properties associated with the vanishing Kolmogorov-Sinai entropy and
anomalously slow mixing of phase-space trajectories. Based on a simple random-walk model, we find the
low-frequency percolation scaling of the turbulent diffusion coefficient to be given by D /��Q2/3 �here
Q�1 is the Kubo number and � is the characteristic fluctuation frequency�. When the pseudochaotic property
is relaxed, the percolation scaling is shown to cross over to Bohm scaling. The features of turbulent transport
in the pseudochaotic regime are described statistically in terms of a time fractional diffusion equation with the
fractional derivative in the Caputo sense. Additional physics effects associated with finite particle inertia are
considered.
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I. INTRODUCTION

It is generally agreed that the presence of low-frequency
long-wavelength fluctuations in hot magnetized plasma may
have a deteriorating effect on the plasma confinement lead-
ing to an anomalously high heat and energy transfer across
magnetic field lines as compared to purely collisional values,
a phenomenon known as anomalous or turbulent transport.
While a first-principles theory of turbulent transport is not at
hand, the practical evaluation of the transport level is often
obtained by scaling relations. An important problem investi-
gates the scaling laws for the diffusion coefficient as a func-
tion of the fluctuation strength or the so-called Kubo number
Q�u� /���, where u� is the characteristic flow velocity, ��

is the cross-field correlation length, and � is the typical fluc-
tuation frequency.

Since the early studies of Isichenko and co-workers �1–4�
it has been discussed by a few authors �5–10� that the diffu-
sion coefficient due to turbulence exhibits a power-law de-
pendence D /��Q�, where the scaling is quasi-linear-like
��=2� for Q�1 and percolationlike ��=7 /10� for Q�1 �as
distinct from Bohm scaling with �=1 �11��. It has also been
discussed �6,12,13� that the percolation scaling with �
=7 /10 is however not exact and that the true value of � is
actually smaller than �although remarkably close to� Isichen-
ko’s original estimate, 7/10. More so, an improved percola-
tion scaling with �=2 /3 �12� has been proposed in connec-
tion with a fractional generalization �14–16� of the Fokker-
Planck-Kolmogorov equation. This deviation from the earlier
predicted �=7 /10 finds support in the numerical simulation
of anisotropic magnetic field turbulence �9,13�.

Although small, the observed discrepancy needs to be ad-
dressed. Indeed this discrepancy leads to noticeable variation
in the predicted transport level �because of the large Q�1�.

Apart from the numerical differences, the basic physics ori-
gin of the percolation scaling, as well as the fundamental
reason for the deviation from 7/10, has not been clearly un-
derstood.

In this work, we expose a few crucial physics aspects
behind the percolation scaling of the turbulent diffusion co-
efficient. We find that a mathematically consistent approach
to turbulent diffusion in the limit of low frequencies �large
Kubo numbers� can be obtained within the concept of
pseudochaos �random nonchaotic dynamics with zero
Lyapunov exponents� �17–19�. Our analysis displays a few
characteristic features of pseudochaos differentiating it from
the more intuitive chaotic behavior. We confirm the percola-
tion scaling with �=2 /3, basing our considerations on a
simple random-walk model in fractal geometry. Yet, a
slightly smaller value ��0.66 could be advocated involving
subtleties of the random walks at percolation.

More so, we demonstrate that the diffusion on percolation
systems is described by a non-Markovian diffusion equation,
with the non-Markovian property expressible in terms of a
fractional time derivative in the Caputo sense �20�. Here the
stress is on “Caputo” and on subtleties of definition of the
fractional derivative operator. Being conceptually very simi-
lar, this definition is somewhat different from the definition
in the Riemann-Liouville sense �21�, which is of wider use in
the applications. Indeed fractional diffusion equations with
the Riemann-Liouville derivative have, in the various con-
texts, been studied and discussed in the literature �Refs.
�22–25� for reviews�.

The paper is organized as follows. The concepts of chaos,
pseudochaos, and resonances in Hamiltonian dynamics are
discussed first �Sec. II�, followed by a derivation of the per-
colation scaling from a random-walk model in fractal geom-
etry �Sec. III�. Fractional derivative equations are obtained in
Sec. IV in the framework of generalized memory function
formalism. Next issues related to particle inertia are consid-
ered �Sec. V�. We summarize our findings in Sec. VI. Appli-
cations of this study pertain to both geospace �26,27� and
fusion �28,29� plasma, and by mathematical analogy to prob-
lems outside the plasma physics.
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II. HAMILTONIAN, RESONANCES, AND PSEUDOCHAOS

To begin, we formulate the transport problem as the
Hamiltonian problem

dx

dt
=

�H�x,y,t�
�y

,
dy

dt
= −

�H�x,y,t�
�x

, �1�

where x and y are coordinates in the plane perpendicular to
the magnetic field, and H�x ,y , t� is a time-depending Hamil-
tonian.

A. Hamiltonian problem—examples

The physics included in Eq. �1� encompasses, beside oth-
ers, the following model realizations:

�i� Field-line diffusion by anisotropic magnetic turbu-
lence. Early work on this problem is due to Rosenbluth et al.
�30�. The magnetic field model is set as a sum of a constant
homogeneous background field B0=B0ẑ in a straight-
cylinder geometry �here ẑ is a unit vector in the axial direc-
tion� and a static transverse magnetic perturbation,
�B��r� ,z�, which is small compared to the background
field: �B� /B0�1. The equations for the magnetic field lines
are cast in the Hamiltonian form by defining �B�

=�A��r� ,z�	 ẑ, where r�= �x ,y� is the position vector in
the perpendicular plane, r� · ẑ=0, �=� /�r�, H�r� ,z�
=A��r� ,z� /B0 is the Hamiltonian, and the axial coordinate z
is considered as “time.” The flow velocity is given by u�

=�H�r� ,z�	 ẑ=�B� /B0, making it possible to evaluate Q
�u� /�����1 /2
���B� /B0���� /���, where �B� is the rms
magnetic fluctuation. In writing the last form we took into
account that the “frequency” of the field variation due to the
z dependence is ��2
 /��, where �� is the typical parallel
correlation length. It is noted that Q�1 implies �� /���1
with a large margin, and hence, it is required that the mag-
netic turbulence be strongly anisotropic.

�ii� Diffusion of guiding centers by the E�	B drift. This
problem refers to the well-known problem of particle diffu-
sion by low-frequency electrostatic microturbulence
�5,31,32�. This is usually one of the most important transport
problems in a fusion plasma. The Hamiltonian is written as
H�r� , t�=−�1 /B0���r� , t�, where ��r� , t� is the electrostatic
potential in the perpendicular plane, such that E��r� , t�=
−���r� , t�, and B0 is the amplitude of a confining uniform
magnetic field. The control parameter is defined by Q
�E� /���B0, where E� is the rms electric field, and � is the
typical fluctuation frequency.

�iii� Diffusion of guiding centers by the �B drift. Con-
sider the magnetic field in the z direction and suppose that it
is spatially nonuniform in the perpendicular plane in accor-
dance with B=B�r� , t�ẑ, B�r� , t�=B0+�B�r� , t�, and
�B /B0�1. The time dependence in �B�r� , t� is assumed to
be very slow so that the corresponding variation frequency
is, with a large margin, small compared to a characteristic
cyclotron frequency, i.e., � /�c�1. It is understood that the
time varying magnetic perturbation generates a time and spa-
tially varying electric field because of Faraday’s law. A con-
sistent description of the guiding center motion, then, will
require that the E�	B and polarization drifts are taken into

consideration. A simplified yet relevant model is obtained for
situations in which the spatial inhomogeneities of the mag-
netic field are attributed a major role in determining the char-
acteristic transport properties of the considered system as
compared to the explicit time dependencies of the magnetic
fluctuation and inductive electric fields. For instance, such
model conditions can occur for the transport of solar wind-
like plasma inside the magnetosphere as a consequence of
the internal fine structure of the Earth’s magnetopause �26�.
In this spirit, if we assume that the �B drift velocity is the
dominating velocity in the Alfvén approximation, and ne-
glect the higher-order corrections due to the inductive elec-
tric field, we can write u���B�ẑ	�B� /qB0, where the
upper sign corresponds to a negative charge and we have,
following Refs. �33,34�, introduced the first adiabatic invari-
ant B=mv�

2 /2B �here v� is the perpendicular particle ve-
locity, m is the particle mass, and other notations are stan-
dard�. In order for the drift approximation to be valid, we
also need to require �v� /�c���B /B0��1. We note in passing
that the �B drift is a finite Larmor radius effect. The Hamil-
tonian is defined by H�r� , t�=� �B /qB0��B�r� , t�. This
model Hamiltonian isolates the effect of the magnetic inho-
mogeneity. It includes the magnetic gradients slowly chang-
ing with time. Effects due to the time varying electric field,
left apart in the present model, will be considered in more
detail in Sec. V.

B. Equipotentials—fractal structure

At a given time t the equipotentials of the Hamiltonian are
defined by y=y�x ,H , t=const�. By standard rules the area
embraced by a closed equipotential is obtained as I=�ydx
�this being the action of the Hamiltonian system� while the
frequency of the orbital motion is given by ��I�=dH�I� /dI
���H�r� , t�� / ��I�r� , t���u� /�, where ����I�r� , t�� is the
circumference of the equipotential contour, and t is kept as a
fixed parameter. Assuming circular equipotentials one writes
I�r�

2 , ��r�, and I��2. In the case of strongly shaped equi-
potential contours, however, the latter scaling relations may
not hold true. Of particular interest are the equipotentials
characterized by self-similar geometry in a broad range of
spatial scales best described as fractals �35�. The implication
of such equipotentials in diffusion by low-frequency turbu-
lence is addressed shortly. For fractal equipotential contours
the simple scaling I��2 is generalized to I��2/dh �the so-
called “area-perimeter relation” �36��, where dh is the fractal
dimension of the equipotential line and we have suppressed
the normalization parameter for simplicity. The fractal di-
mension dh is defined by the scaling ��r�

dh �instead of �
�r� in nonfractal geometry�. The dh values are generally
fractional and larger than one. Eliminating � by means of the
area-perimeter relation, one obtains ��I��u� / Idh/2.

C. Hamiltonian—Fourier representation

In the discussion so far we have not made any specific
assumptions about the structure of the H field in space and
time. We now need to be more detailed in connection with
the notion of “turbulence.” It is convenient to think of turbu-
lence as of collection of plane waves, with amplitudes bn,k
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and random phases �n,k, making it possible to expand the
Hamiltonian into the Fourier series to give �with k being the
wave vector in the perpendicular plane�

H�r�,t� � 	
n

	
k

bn,k cos�k · r� − �nt + �n,k� . �2�

Next, it is generally agreed that there is a broad isotropic
wave vector spectrum characterized by a power law. In two-
dimensional �2D� geometry we can write

P�k� � 2
k	
n

bn,k
2 � k−�. �3�

Actually a more precise way of looking at the spectral char-
acteristics of the turbulence would be to introduce a fully 3D
spectrum, squeezed to a “pancake” in the perpendicular
plane. Such spectra are considered in Ref. �8�.

The next point to be addressed is the � value in Eq. �3�.
For the present analysis, we take 1���3. Together with the
inverse power-law energy density distribution, the latter con-
dition implies that the fluctuations are self-similar, in the
sense of Refs. �35,36�. Indeed this property of self-similarity
finds support in the many different experiments �27,37–41�.
From the standpoint of formal treatment, the fluctuations be-
ing self-similar pave the way for the application of fractal
geometry as proposed in the model below.

To match with the physics natural limitations, the spec-
trum in Eq. �3� is characterized by finite cutoffs on both
sides, i.e., a�2
 /k���. Without loss in generality, we shall
assume that all fields are smooth at length scales shorter than
a and that there is a transition to a statistically homogeneous
distribution of the fluctuations at length scales longer than
��.

Consistent with the above assumptions regarding the
guiding center approximation, we shall also assume that a is
large compared with the typical scales of the particle gyro
motion. When the particle gyro radius is not small enough to
match with this condition, then the particle motion can be
considerably modified by the multiscale geometry of the tur-
bulent field. In some cases the particle trajectory can be ex-
tremely complicated. One example of this complex motion is
the case of “strange diffusion,” discussed in Refs. �13,27�.
We also note that, when �� /a→�, the expansion in Eq. �2�
reproduces the so-called fractional Brownian function, which
offers a particularly clear example of fractal behavior
�35,42,43�.

D. Percolation property and resonances

Because of the sign symmetry of the Hamiltonian in Eq.
�2�, the zero set H�r� , t=const�=0 contains a percolating
equipotential line �4,44�, which, by its geometric meaning,
stretches the entire system. The percolating line is the chan-
nel through which turbulent transport penetrates to the large
scales �4�. One way to describe the transport is to directly
link it to the complex folding of the percolating line in the
real space and in this fashion to predict the anomalous scal-
ing laws for the turbulent diffusion coefficient as suggested
in the early work �1�. This approach, however, leads to some
difficulties associated with the fractal dimension of the trans-

port process as it basically ignores the dynamical features of
the transport �12�. A correct way to deal with the properties
of turbulent diffusion is to account for resonances between
the orbital motions of the particles and the time variation in
the Hamiltonian. As is well known, when phase-space trajec-
tories are subject to local instability, the matching fluctuation
and orbital frequencies or the matching harmonics of these
favor departure from the exact periodic energy-conserving
motion thus giving rise to transport phenomena in phase
space �Refs. �45–47� for the full discussion�. In the limit of
very low frequencies, the conditions for a resonance require
the corresponding excursion periods to diverge. Mathemati-
cally, this can be satisfied for fractal equipotential contours,
characterized by the diverging lengths due to the structure on
many scales. Analysis of Ref. �44� have shown that the equi-
potentials of the H field in Eq. �2� occurring in close prox-
imity to the percolating line are indeed described by the frac-
tal structure in the limit �� /a→� and their fractal dimension
was found to be dh=1.32�0.01. This fractal dimension is
close to the value dh=1.37�0.03, obtained in Ref. �48�, and
is clearly smaller than the hull exponent, dh=1.75, used by
Isichenko and co-workers �1,2,4�. Anticipating our result in
Sec. III, here we mention that the percolation scaling of the
turbulent diffusion coefficient will not however involve the
dh parameter directly, in contrast with the conclusion of Refs.
�1,2,4�.

E. From the percolation property to pseudochaos

When the fluctuations are very slow, we expect the reso-
nance conditions to be naturally satisfied in vicinity of the
percolating line, provided that the number of modes in Eq.
�2� is large enough. As is already mentioned in the above
discussion, this line, being strongly shaped, is characterized
by the fractal geometry in the limit �� /a→�. Fractality, in
its turn, guarantees the existence of resonant orbits for �n
→0. It is noted that, when �n→0, the resonances strongly
overlap in a very narrow layer enveloping the percolating
line. This observation actually refers to the general properties
of Hamiltonian dynamics near the separatrices, discussed in
Ref. �47�. It is the overlap of resonances that introduces in-
stability into the motion. If one defines the characteristic fre-
quency, �, one finds the width of the resonance layer to be
���
� �as compared to the distance between the reso-
nances �����. Note that ����� for �→0, and that the
width of the resonance layer shrinks to zero �as 
�� while
the density of the resonances in the layer, defined as inverse
distance ��, diverges as 1 /�. Inside the layer, the dynamics
are basically random because of the many resonances present
�46,47�. On the other hand, the concentration of the reso-
nance properties on a fractal structure, supported by �� /a
→�, strongly reduces the phase space available for the ran-
dom motions. As a consequence, the chaotic trajectories
separate anomalously slowly. “Anomalously slowly” means
subexponential for �→0 �see the discussion below�, which
is equivalent to saying that the Lyapunov exponents, thought
of as functions of position in phase space, vanish at percola-
tion. In view of the vanishing ��→0 the phenomenon can
be envisaged as “stickiness” to the percolating line. More so,
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the vanishing Lyapunov exponents, combined with the inher-
ently random character of the motion, indicate that the dy-
namics are pseudochaotic, in the sense of Refs. �17–19�, in-
stead of being just chaotic. This is the key point. Based on
the notion of pseudochaos �17�, one almost straightforwardly
derives the percolation scaling of the turbulent diffusion co-
efficient in the limit of slow fluctuation frequencies.

F. K parameter

In order to make these intuitive arguments more precise,
we proceed as follows. In the basic theory of Hamiltonian
chaos one writes the number of overlapping resonances as

K, where the K value �the so-called nonlinearity parameter�
is obtained from �45–47�

K =
I

�
�d��I�

dI
� . �4�

Consistent with the above orderings, 
K�1 /
��1 in the
resonance layer. Also, if we denote the Lyapunov exponents
of the Hamiltonian system in Eqs. �1� by ��, we can order
����hKS�1 /�c. Here hKS is the Kolmogorov-Sinai entropy
and �c is the characteristic mixing time. For K�1, the mix-
ing time is written as �c�1 /2� ln K �Refs. �45,47� for the
full discussion�. When �→0, the K parameter goes to infin-
ity as 1 /� while the mixing time diverges as �c�
−1 /2� ln �→�. Accordingly, ����hKS�−2� ln �→0 at
percolation. Thus, while the dynamics are intrinsically ran-
dom due to the many overlapping resonances, the available
phase space is insufficient to host the chaos. Indeed the mix-
ing happens to be subexponential permitting the system to
exhibit only a pseudochaotic behavior.

Let us now rewrite Eq. �4� in a more insightful form.
Substituting ��I��u� / Idh/2 and performing the trivial differ-
entiation over I leads to K�u� /��, where the area-perimeter
relation I��2/dh has been applied and we have omitted the
numerical constant factor for simplicity. For the fractal equi-
potential contours near the percolating line, the circumfer-
ence ����

dh, making it possible to evaluate K�u� /���
dh. Re-

membering that the Kubo number Q�u� /���, it is found
that

Q/K � ��
dh−1. �5�

Hence, in the pseudochaotic regime, Q�K due to fractality
��� /a�1, dh�1�. When dh→1, the Q and K parameters
have the same order.

G. Kolmogorov-Sinai entropy

Eliminating K by means of Eq. �5� we can also express
the Kolmogorov-Sinai entropy as a function of the Kubo
number as hKS�2� ln Q−2��dh−1�ln ��−2� ln C, where
the last term in the sequence comes from the �suppressed�
normalization constant factor in the above scaling relation. It
is noted that, to the leading order, hKS is a logarithmic func-
tion of Q. More generally, this logarithmic behavior can be
slowed down by dh nonlinearly depending on the Kubo num-
ber. The implication is that fractal geometries of the contours
on which the resonances occur can differ with the control

parameter. This effect will be discussed elsewhere �49�. Our
result for hKS is in contrast with Isichenko’s finding hKS
��Q1/2 ln Q for Q�1 �Eq. �4.55� in Ref. �4�� and the
square-root-like scaling versus Q, argued to be “universal.”
Indeed it is found in direct numerical computations �49,50�
that the square-root-like scaling of the entropy is not repro-
duced and that the behavior is actually slower than a power
law, tending to saturation. We interpret these results as con-
sistent with implications of the slow mixing and
pseudochaos.

H. Summary

The end result of the above reasoning is that turbulent
diffusion in the limit of very low frequencies is characterized
by the random dynamics squeezed to a subset of phase space
with fractal geometry. In this regime Q�K�1, whereas for
the classical chaotic behavior �45,47�, characterized by the
wide domains of random motion, Q�K�1. Overall, the dy-
namics bear signatures enabling to associate them with
pseudochaos �random nonchaotic dynamics with zero
Lyapunov exponents� �17�.

III. PERCOLATION SCALING FOR TURBULENT
DIFFUSION

We are now in position to obtain the scaling law for the
diffusion coefficient in the parameter range of slow fluctua-
tion frequencies �large Kubo numbers�. The calculation is
based on the general scaling form

�r�
2 �t� = ��

2 �t/���f�t/��� , �6�

where �� is the characteristic diffusion time to the distance
��, and f is a scaling function, such that f���=const. The
form in Eq. �6� is similar to that considered by Gefen et al.
�51� for anomalous diffusion on percolation clusters �in their
model �����

2+�, where � is the index of anomalous diffu-
sion�, and earlier by Straley �52�.

Based on the above discussion, we assume the f function
in Eq. �6� has already reached its asymptotic value after the
characteristic mixing time t��c. That is, after this time, the
dispersion in Eq. �6� is linear. On shorter time scales, the
dispersion deviates from linear because of the concentration
of the transport process on a fractal geometry. Since the dy-
namics are nevertheless random, we can envisage them as a
random-walk process on a fractal cluster at percolation. This
process has been discussed as a simple model process for
diffusion in disordered systems �“the ant in the fractal laby-
rinth”� �53,54�. In those models a particle �random walker� is
assumed to hop in random manner between nearest-neighbor
sites of a fractal lattice moving a step of length a each a /u�

seconds. In more advanced models the condition that the
steps occur at fixed time intervals is relaxed �55�. Note that,
in all these models, the fractal lattice is assumed to be sta-
tionary. In turbulent diffusion, this assumption holds true for
only short-time lags t��c�1 /�. At these short times, we
can require the f function in Eq. �6� to correspond with the
scaling function in the simple random-walk model �51�:
f�s��s−/��2+��. Here  and � are the percolation indices,
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whose definitions are explained in major reviews �4,56,57�.
It is remarked that �c has the sense of the characteristic cross-
over time scale where the f function changes from the initial-
time power-law behavior to the asymptotic constant value.
The diffusion coefficient is evaluated by noting that f���
���c /���−/��2+��, then making use of Eq. �6� to obtain

D � ���
2 /2�����c/���−/��2+��. �7�

Focusing on the random walks at percolation we somehow
expect the fractal range to be wide enough, ideally �� /a
→�. On the other hand, the slowness of the fluctuations
implies that Q�u� /���→� for �→0. For the purpose of
formal orderings, we require �� /a→� diverge faster than
Q→�. That is, given a finite fluctuation frequency, we set
�� /a�u� /���. The implication is that the fluctuations
should not be too slow for the actual �finite� size of the
system, otherwise the dynamics retain a deterministic char-
acter. If we define �����

2 /au�, from the last inequality we
also get ����1 showing that the diffusion time to the dis-
tance �� must be large compared to the period of the field.
Because of this, we expect fractal correlations to decay be-
fore the particles have crossed the entire system. Thus, in our
model, the “anomalous” scaling �����

2+� �51� is invalidated
in the limit ��→� as a consequence of the time varying
Hamiltonian. Instead, the conventional scaling law for diffu-
sion, �����

2 , applies. Remembering that �c�1 /2� ln K, we
can cast the diffusion coefficient in Eq. �7� in the form

D � 2−��ln K�1−��a/�������
2 Q�, �8�

where the exponent � is defined as

� = 1 − /��2 + �� . �9�

This is the desired result. We have D /��Q�, where � de-
pends on the percolation indices but the expression is differ-
ent from the one obtained by Isichenko �4�. Note that D /� is
not a simple scaling function of � �because of the K param-
eter varying with frequency�. The correction is expressible as
a power of the logarithmic dependence ��−ln ��1−�, where
�→0.

A. General expression

It is convenient to express � in terms of two parameters
only, the index of anomalous diffusion �= �−�� /� and the
Hausdorff dimension of the infinite percolation cluster, df
=d−� /� �56�. Here d is the topological �integer� dimension
of the ambient space. Remembering that the considered sys-
tem of equations, Eq. �1�, is 2D, we have d=2. Nevertheless,
the above relation, which is called the hyperscaling relation,
holds in all d�2 �57�. In the physics context discussed in
this work the Hausdorff dimension df measures the subset of
phase space occupied by the random motions. This dimen-
sion is to be distinguished from the fractal dimension of the
equipotential lines, dh. The implication is that the particles
�random walkers� do not follow the equipotential lines ex-
actly because of the fine structure of the resonance layer.
When df is smaller than d, the random motions are, by defi-
nition, not space filling. Indeed they fill only a fractal subset
of phase space, characterized by df =d−� /�. Eliminating the
percolation indices in Eq. �9� one gets

� = �2 − d + df�/�2 + �� . �10�

To take the nonfractal limit in Eq. �10�, one sets the Haus-
dorff dimension equal to the ambient dimension, and the
index of anomalous diffusion equal to zero. That is, df =d
and �=0. As a consequence, Bohm scaling with �=1 is re-
covered from Eq. �10�. This limit, because of the space-
filling property, corresponds with the assumptions of classi-
cal chaotic behavior. Next we focus on fractal �not space
filling� case: df�d. Setting d=2 in Eq. �10� one obtains

� = df/�2 + �� = ds/2. �11�

Here ds=2df / �2+�� is the so-called spectral fractal dimen-
sion �54,57�, which has come into physics as the density-of-
state exponent for vibrational excitations of fractal networks
�58�. It is noted that ds�df �because of ��0�. The spectral
dimension has the sense of effective fractional number of
degrees of freedom in fractal geometry �59�. We draw atten-
tion to the fact that this fractional number is not determined
by df only but also requires �. In general, df and � are two
independent parameters, whose tradeoff defines ds �and
hence the � value, according to Eq. �11��. The situation is
somewhat simpler for percolation, as we now proceed to
show.

B. Numerical estimate

In recent years there has been much excitement about the
Alexander-Orbach �AO� conjecture �58� that ds=4 /3 for d
�2 at percolation. The AO conjecture is exact in the high
dimensions d�6 where it holds as a mean-field result �60�.
In dimensions lower than these, the AO conjecture proves to
be not exact, being, nevertheless, a remarkably accurate es-
timate of the ds value. Based on the available numerical and
theoretical predictions, the true value of the spectral dimen-
sion is believed to be slightly smaller than 4/3. The actual
discrepancies lie within half a percent. See Refs. �57,54,61�.
As an example, consider the analytic prediction ds
=1.327�0.001 for d�6, suggested in Ref. �62�. If, in Eq.
�11�, we apply the mean-field estimate ds=4 /3 thus ignoring
the above small discrepancy we get �=2 /3. This value co-
incides with our previous finding �Eq. �28� in Ref. �12�,
where the Hurst exponent H=1 /2 for diffusion�. If one is a
purist and wants to account for the departure from mean-field
properties, the procedure is to expedite the spectral dimen-
sion ds�1.327 �62� or the like �63� to find ��0.66, at little
consequence for the rest of the analysis. The basic phenom-
enon is contained in Eq. �9�.

C. Summary

To this end, our final result for the percolation scaling is:
D /��Q2/3, where Q�K�1, and we have omitted the loga-
rithmic correction factor for simplicity. When the random
motions fill the ambient space �df =ds=d�, Bohm scaling
with �=1 is recovered. A deviation from Bohm scaling as-
sociated with a fractional � smaller than one can be thought
of as a signature of concentration of the turbulent transport
on a subset of phase space with fractal geometry.

PSEUDOCHAOS AND LOW-FREQUENCY PERCOLATION … PHYSICAL REVIEW E 79, 046403 �2009�

046403-5



IV. FRACTIONAL KINETIC EQUATIONS

A. Fractional diffusion equation

The power-law dependence D /��Q� which we associate
with the initial diffusion on a fractal cluster at percolation
must have implications for the generalized form of the dif-
fusion equation at time scales a /u�� t��c�1 /�, for which
the charge carriers move only on the fractal. Observe that the
dispersion in Eq. �6� is sublinear at these time scales because
of the inverse power-law behavior f�t /���� �t /���−/��2+��

and that the function f has not yet reached its asymptotic
value. The sublinear dispersion is explained by the trapping
effect caused by cycles and dead ends of the fractal �i.e., the
“nodes-links-blobs” model� �Ref. �57� and Fig. 1 therein�. In
general, obstacles and traps act in a way as to introduce
memory into the motion. One possible way to include the
memory is to generalize Fick’s first law to �where, to sim-
plify the notations, we denote the position vector simply by
r�

j�t,r� = − �
0

t

��t − t�� � ��t�,r�dt�, �12�

with the continuity condition written as

�

�t
��t,r� = �

0

t

��t − t���2��t�,r�dt�. �13�

In the above, j�t ,r� is the probability current, which flows
against the concentration gradient, and ��t− t�� is a memory
function, which is nonzero for time lags, for which the dy-
namics are influenced by the fractal geometric properties,
and is identically zero or vanishing otherwise. In order to
correctly introduce the memory function, we define first a
generalized f function via

f̂�s� = �0 if s � 0

f�s� if s � 0
� . �14�

Thus, by its definition, f̂�s� coincides with the f�s� function
for s�0 and is identically zero for s�0. Without loss in
generality, we can set the asymptotic value of f�s� to one,

thus exposing the definition of f̂�s� as follows:

f̂�s� = �0 if s � 0

s�−1/ ��� if 0 � s � sc

1 if s � sc
� , �15�

where sc��c is a crossover time scale, where the behavior
changes from a power law to the asymptotic constant value,
and the gamma function  ��� is introduced for the normal-

ization reasons. Mathematically, the f̂�s� function offers a
suitable generalization of the Heaviside step function by in-
corporating an intermediate power-law behavior for 0�s
�sc. The Heaviside function is recovered from Eq. �15� in

the limit �→1. Observe the following properties of the f̂�s�
function: �i� f̂�s� is discontinuous in the origin for all ��1,

and �ii� the integral � f̂�s�ds converges for s→ +0 when
��0. Likewise to the Heaviside step function and Dirac’s

delta function, the f̂�s� function and its derivatives must be
considered as generalized functions. Now the memory func-

tion is defined as the time derivative of the f̂�s� function:

��s� =
d

ds
f̂�s� . �16�

We have, by means of Eq. �16�, connected the memory func-

tion with the generalized scaling function f̂�s� in the random-
walk model. Clearly, ��s�→0 for s�sc and ��s��0 for s
�0. The latter condition is also required by causality. When
�→1, the ��s� function coincides with Dirac’s delta func-
tion: ��s�=��s�. In this limit, the relation between j�t ,r� and
���t ,r� is local in time �see Eq. �12��. Accordingly, the dy-
namics are memoryless, corresponding to an ordinary Fick-
ian diffusion and the frequency-independent asymptotic dif-
fusion coefficient. Combining Eqs. �13� and �16� we have

�

�t
��t,r� = �

0

t d

dt
f̂�t − t���2��t�,r�dt�, �17�

or

�

�t
��t,r� = − �

0

t d

dt�
f̂�t − t���2��t�,r�dt�, �18�

where the time derivative d /dt� acts only on f̂�t− t��. Inte-
grating by parts in Eq. �18� with the initial condition
�2��t ,r�=0 for t=0 it is found that

�

�t
��t,r� = �

0

t

f̂�t − t��
�

�t�
�2��t�,r�dt�, �19�

where use has been made of f̂�0�=0. Focusing on the inter-

mediate self-similar range, we take f̂�s�=s�−1 / ���, making
it possible to rewrite Eq. �19� as

�

�t
��t,r� =

1

 ����0

t dt�

�t − t��1−�

�

�t�
�2��t�,r� . �20�

The operator on the right-hand side of Eq. �20� acting on
�2��t� ,r� is known as the Caputo fractional derivative of
order 0�1−��1, c

0Dt
1−� �Ref. �20� for details�. With this

last definition Eq. �20� takes the form of a fractional diffu-
sion equation

�

�t
��t,r� = c

0Dt
1−��2��t,r� . �21�

For �→1, the Caputo derivative acts as a unit operator, thus
yielding the familiar—“integer”—diffusion equation with no
integrodifferentiation added. The same integer equation is

obtained by identifying f̂�s� with the Heaviside step function
in Eq. �19�.

The end result of the discussion above is that the turbulent
transport associated with a simple random-walk process on a
fractal cluster at percolation is described by a fractional time
diffusion equation with the fractional derivative in the
Caputo sense. This equation is different from the equation
considered in Refs. �22–24� in that it uses the Caputo frac-
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tional derivative, c
0Dt

1−� �instead of more familiar the so-
called Riemann-Liouville fractional derivative �21��.

B. Fractional relaxation equation

The characteristic function of the fractional diffusion
equation, Eq. �21�, obeys the fractional relaxation equation
with the Caputo time derivative

�

�t
��t,k� = − k2

c
0Dt

1−���t,k� . �22�

Initial-time behavior of ��t ,k� can be obtained by reducing
the fractional derivative to

c
0Dt

1−���t,k� �
1

 ���
t�−1��t,k� . �23�

Substituting into Eq. �22� and carrying out the trivial integra-
tion over t leads to a stretched exponential form for the
��t ,k� function �see, also, Ref. �22� and Eq. �B.7� therein�:

��t,k� � exp�− k2t�/ �� + 1�� . �24�

This stretched exponential relaxation describes the decay of
charge-density inhomogeneities in self-similar geometry. To
obtain a 2D specific expression we set �=2 /3 in Eq. �24�,
yielding ��t ,k��exp�−k2t2/3 / �5 /3��. Apart from the
plasma physics application discussed above, we expect this
relaxation pattern to also characterize charge relaxation in
thin films of disordered solid materials. Some discussion of
these properties can be found in Refs. �64–66�.

The main conclusion to be drawn from the above analysis
is that the anomalous diffusion associated with the random
walks at percolation has non-Markovian character at inter-
mediate time scales that are in the range a /u�� t��c

�1 /�. For t��c, the fractal correlations, included in c
0Dt

1−�,
vanish. Consistent with this loss of correlation the fractional
diffusion and relaxation equations discussed above cross
over to their integer-derivative counterparts as time t→�. It
is this loss of correlation that permits one to speak about the
asymptotic transport process in terms of “diffusion,” in the
true sense of the wording, and to obtain the anomalous scal-
ing law in Eq. �7� by limiting the power-law range of the f�s�
variation.

V. INCLUDING INERTIA EFFECTS

The next contribution to the theory of turbulent diffusion
involves the effects of particle inertia in the slowly varying
electric and magnetic fields. Here, we consider a simplified
model, which assumes the magnetic field to be uniform in
space and time: B=const. This model captures the essential
physics due to inertia. Further generalization allowing the
magnetic field to also be a function of time is basically ob-
vious. In a constant B field with a slowly varying perpen-
dicular electric field the cross-field guiding center drift ve-
locity is accurately approximated by �top sign for electrons�
�34�

u��t� =
E� 	 B

B2 �
1

�cB

dE�

dt
, �25�

where the last term accounts for the polarization drift, and
the time variation in electric field is assumed to be slow
compared to the gyro frequency. Assuming a periodic time
dependence E��ei�t with the characteristic wave frequency
���c, one finds the velocity components to be

ux = Ey � �i�/�c�Ex, �26�

uy = − Ex � �i�/�c�Ey , �27�

where B=1 for simplicity. Eliminating Ex in Eq. �26� yields

ux � �i�/�c�uy = Ey − ��/�c�2Ey � Ey . �28�

Likewise in Eq. �27�:

uy � �i�/�c�ux = − Ex + ��/�c�2Ex � − Ex. �29�

Last terms on the right-hand side of Eqs. �28� and �29� could
be neglected since they involve the same components of
electric field as the leading terms and are smaller by �� /�c�2.
Applying � /�x to Eq. �28�, then � /�y to Eq. �29�, and adding
the two equations together, one finds

�ux

�x
+

�uy

�y
= �

i�

�c
� �uy

�x
−

�ux

�y
� . �30�

Here, use has been made of E�=−��. Equation �30� shows
that the polarization drift introduces subtle compressibility
into the motion. Clearly, the compressibility effect scales lin-
early with the mass-to-charge ratio �via the dependence on
the cyclotron frequency�. Topologically, the compressibility
of advecting flow gives rise to limit cycles and stable foci,
which attract and trap tracer particles �Ref. �4� and Fig. 30
therein�. Thus, we expect the turbulent diffusivities of iner-
tial tracers to be comparatively smaller than the diffusivities
of ideal particles due to compression by the polarization
drift. Equations �28� and �29� suggest the compression effect
be described in terms of the effective velocity flow, with the
components of the corresponding velocity vector defined as
ũx=ux� �i� /�c�uy and ũy =uy� �i� /�c�ux, and the charac-

teristic flow speed ũ�=
ũx
2+ ũy

2�u�

1−�2 /�c

2. With these
definitions one introduces the effective Kubo number by

means of Q̃� ũ� /���. That is,

Q̃ � Q
1 −
�2

�c
2 . �31�

Accordingly, the effective diffusion coefficient is obtained

from Eq. �8�, in which one uses Q̃ instead of Q. Remember-
ing that �=2 /3 at percolation, and keeping the first nonvan-
ishing correction due to inertia, we find

D � �ln K�1/3�a/2���2/3���
2 �1 − �2/3�c

2�Q2/3. �32�

Prospective applications of the results obtained can be pro-
posed for the impurity transport in fusion plasma. Recently,
the turbulent transport of inertial impurities has been studied
by numerical simulations in Ref. �67� and the specific phys-
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ics consequences arising from compressibility have been
placed in the center of attention.

VI. OVERALL SUMMARY AND FINAL REMARKS

In the present work, we have exposed a few crucial phys-
ics issues behind the so-called percolation transport in low-
frequency electrostatic �anisotropic magnetic� turbulence,
basing our investigations on the formalism of Hamiltonian
dynamics, random-walk models, and fractional derivative
equations. The central problem being addressed is the scaling
of the turbulent diffusion coefficient with the fluctuation
strength in the limit of slow fluctuation frequencies �large
Kubo numbers�. In this limit, the transport is found to exhibit
pseudochaotic, rather than simply chaotic, properties.
“Pseudochaotic” means random nonchaotic dynamics with
zero Lyapunov exponents �17–19�. In our description,
pseudochaos occurs as a consequence of the concentration of
the resonant motions on a subset of phase space with fractal
geometry. Because of the strongly reduced phase space, the
dynamics are characterized by anomalously slow mixing
properties associated with the vanishing Kolmogorov-Sinai
entropy.

As a simplified microscopic model we considered a
random-walk model on a fractal cluster at percolation �“the
unbiased ant in the fractal labyrinth”� �53�. Based on this
model, we found the low-frequency percolation scaling of
the turbulent diffusion coefficient to be given by D /��Q�

with �=2 /3 �here Q�1 is the Kubo number�, in agreement
with the work in Ref. �12� and at variance with the prediction
�=7 /10 in Refs. �1,2,4�. When the nonfractal limit is taken
in the model �i.e., the random motions are thought of as
space filling�, Bohm scaling with �=1 is reproduced. In this
spirit, a deviation from Bohm scaling, associated with the �
exponent smaller than one, can be interpreted as a signature
of concentration of the transport processes on a fractal ge-
ometry.

Focusing on the non-Markovian properties of the trans-
port, by introducing a generalized memory function for the
random walks at percolation, we have derived a fractional
diffusion equation with the time derivative in the Caputo
sense �as opposed to a more conventional definition of the
fractional differentiation in the Riemann-Liouville sense�. In
our study the non-Markovian property has occurred as a con-
sequence of fractality and, therefore, has had a purely geo-
metric origin.

Finally, we have discussed a simple generalization of the
model treatment described above by taking into account fi-
nite particle inertia. Inertia enters the model equations in the
form of the polarization drift and leads to a decreased par-
ticle diffusivity because of compression effects. These results
may find further application in describing the impurity trans-
port in fusion plasma.

We have, in the present work, significantly simplified the
presentations by assuming a characteristic microscopic time
and spatial scales of the random motion. Extensions to in-
clude a distribution of time intervals between consecutive

steps are straightforward and have, in the case of homoge-
neous support, discussed in Refs. �22,23� on the basis of
continuous time random walks �CTRWs� �55�. In general we
expect the effect of time scale distribution to slow down the
anomalous diffusion due to fractal geometry. In this respect,
a fractional � smaller than 2/3 may be conceivable. We re-
mark however that, while the detailed microscopic picture of
the random motion may vary, we expect the basic physical
properties discussed here to remain essentially the same.

CTRW-like models and their derivatives are further gen-
eralized to include a distribution of jump lengths
�22,24,25,68,69� physically corresponding to nonlocal trans-
port in phase space. On the level of CTRWs, fractional dif-
fusion models of perturbative transport in magnetically con-
fined fusion plasma including nonlocal transport have been
obtained in Refs. �70–73�, where one also finds a discussion
of the numerical simulation results.

There can be various physical mechanisms at play to give
rise to nonlocal transport. One such mechanism can be asso-
ciated with mode coupling and buildup of correlations �not
included in the wavelike Hamiltonian in Eq. �2�� leading to
the formation of large-scale coherent structures in the turbu-
lent flow. It is found in direct numerical simulations of
forced and dissipative turbulences that the presence of coher-
ent structures leads to a spatially nonuniform transport �74�.
Consistent with this property, in electrostatic drift-wave tur-
bulence, coherent vortex structures are found to enhance the
diffusion in the direction of the background density gradient
�31,75�. The propagation of coherent structures can also
cause significant broadening of the turbulent region and in
this fashion affect the scaling properties of the transport
�76,77�. In burning plasmas, where the energetic ions �MeV
energies� and charged fusion products constitute a significant
fraction of the total plasma energy density, the coupling be-
tween the nonlinear energetic particle modes �78�, mediated
by the energetic particles themselves, results in the transition
to strong convectivelike transport by radially amplifying ava-
lanches �79,80�. The process obeys complex nonlinear para-
bolic equation, which, under some nonrestrictive assump-
tions regarding the shape of the energetic particle source
function, can be cast �28� in the generic form of a fractional
nonlinear Schrödinger equation �27�. Indeed the latter equa-
tion, which is closely related with the fractional Ginzburg-
Landau equation �81�, describes the fractional dynamics of
coupled nonlinear oscillators with long-range interaction
�82�. After all, we address nonlocal edge phenomena in mag-
netically confined fusion plasma as for instance the problem
of anomalously fast response in the plasma core to a cold
pulse edge perturbation �73,83�. Analyses of these general
phenomena remains to be carried out.
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